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Agenda

= Review of optimization in oil refining

* Real Time Optimization

* Reduced Space Optimization



Petroleum refining



Flowsheet
Crude Oil Refining



Refining optimization history

technique
Tools to interpret the solution and
run what-if’s.

lat ~ * Head office

ji pi * Refining early adopters (Exxon

j 1950's)

f! Crude selection, operating modes

{! * 1961 early SLP paper (Shell oil)

; * LP notjusta fast solution



Basic Process Control

Controller
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Refining optimization history

* Refineries

Improving process control
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* 1980's insight that complicated process
(efolah dno) me)ce)0) (lant mqele)(eM ol-mce) annie) ralacre m-]are!

solved by LP and OP



Refining Optimization Hierarchy

Short Term Plan Operating Objectives, Component

Prices, Constraints
g
Br Operating Targets

Ad @SS
.

Advanced Control Controller Setpoints
ws

3 tf
Regulatory Valve Positions

Control
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Why Optimize in Real Time?

* Short term planning model based on

“sustainable” average operation
But things change.....

Crude oil may be different

Processes may be cleaner/more fouled

May be hotter/colder

Real process is nonlinear

* Real time optimization intended to capture
these opportunities



RTO Approach

= Model plant with engineering equations

Heat + mass + hydraulic + equilibrium
relationships

* Run simulation in parallel to the plant and
calibrate to the plant measurements

* Optimize the model



Steady state operation

(x) =0
ay

Flow, temperatures, pressures, size

= f(x)
Nonlinear algebraic equations
Conservation mass, energy, chemical equilibrium



Building the simulated plant
Sequential modular

xf = F(a)
in outed ee

Blocks are solved in the order of material“



Sequential modular

Recycles become awkward and need iteration

ele Sac



Open Equations

I(x) =9
* Complete plant model expressed in one large

set of (sparse) equations
* Run it through a nonlinear root solver

* Encouraged by success in solving non linear
constraints



Simple still



Inputs

* Need to fix certain variables to reach solution

* Plant instruments have error



Reconciliation
* Find the smallest set of adjustments to the plant

measurements that satisfy the equations

Min: W.(A-100) +W,(B-S0y) + W,(C—28) + W,(D=35) + WCE

A: 100 ;_C: 28

D:35 >|_E: 43

4B
)



Initial Basis

" Offline design software used to fit base case

= Results used to provide initial basis for open
equations

* Thereafter, converged online solutions used

as starting basis for next online run



Optimization engine

* Minos

Projected augmented Lagrangian

# Analytic derivatives

* Convergence not guaranteed!
Good starting values

Sensible bounds

Tuning parameters
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= Least squares based reconciliation works well
when the measurement s are considered to
be normally distributed around their true
values with approximately known error

= Large errors (eg. instrument failures) violate
these assumptions and bias reconciliation

= RTO systems include pre-screening to
eliminate values obviously in error (W,=0)



Optimization

* Fix instrument adjustments and other reconciled
performance values

" Change objective function
Maximize Profit: © Products - Feed — Utilities

New setpoints = Old setpoints + rate limits



RTO Sequence

is

Check recent history to
confirm that plant is steady

=alvanviateleom ore maaler-llelaclan(-1ane

Fit model to plant data

Calculate new setpoints to
increase profit
Check process steady, controls
available



Technical challenges
* Solving 20+K non linear equations is not fool

olgeleyi

* 95% convergence failures occurred during
reconciliation phase

* Could have put more time trying to make
constraints more linear

K K, > a?a8 + a8 +...5P;-P,
d, d,

Eg: transformations x, =1/d;*""



Catalytic cracker Ultramar QC

= ~ 27,500 equations

* ~ 29,500 variables

* ~ 111,000 derivatives

Reconciliation — 500+ measurements

Optimization 60 setpoints

Execution — 25-40 minutes/cycle



Case study - 4@KBPD

Stream

LSR

Naphtha
Distillate
VLGO
ere)

HVGO
Asphalt

NET
PROFIT

Before
(KBPD)
2.47

5.15

4.66

1.1

1.33

7.68

13

After
05653 BD)

2.51

4,91

5.03

1.1

1.22

7.6

13.02

crude unit

Change
(KBPD)
0.041

-.246

0.368

0

-.103

-.075

0.018

$2220/Day



RTO Benefits

Crude units $.01- $.05/BBL

Hydrocracker $.07-$0.3/BBL

FCCU 2% unit profit

Entire refinery $0.50/BBL (Solomon)



Doubts and unease

Was the optimization solution correct?

Stream Before After Change
(KBPD) (KBPD) (KBPD)

LSR 2.47 2.51 0.041

Naphtha 5.15 4.91 -.246

Distillate 4.66 5.03 0.368

VLGO 1.1 1.1 0

Tere) 1.33 1.22 -.103

is Aeere) 7.68 7.6 -.075

Asphalt 13 13.02 0.018

NEI $2220/Day
PROFIT



Profit = Product — Energy - Payroll

Intuitive answer:

Profit will improve by:

1. Reduce the terms with negative
lela

2. Increase the terms with positive
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Optimization geometry

Profit= contoursoe



Constraints

= On paper constraints are just a line

= In real life — people spend their time avoiding
trouble

* Constraints can be benign or emotionally
(elaT-lne[te]

* In RTO, the operators experienced first hand
the simplex method



PROFIT PATH ANALYSIS

8100

8000

7900

Profit = Saraki

$270k/q



A drop in the bucket

Crude Oil Price $/BBL
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Behavioural Economics

= How emotions and perceptions affect
economic decisions

* People math # Algebraic math
Risk, reward, gains, losses, time are perceived
differently



Prospect theory - gains and losses

Subjective Value
(ie., Psychological Impact)

$600 —

Objective Objective
losses gains



PROFIT PATH ANALYSIS

INTERVAL



Familiarity

* Pattern recognition

* 10,000 hour rule (Gladwell)

Practice makes perfect

* Value proposition of advanced control is to

imitate the best operator

* Value proposition of RTO is to seek out
incremental, non-intuitive benefits
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= Interactive
Familiarity \y

Cruise control e
Smart phones L Ol

* Hidden y
Out of sight .... >;
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* Familiar

* How best to model a plant?



Modeling the plant

= Fundamental design models?
Design:

What are the best arrangements and sizes of
equipmentto maximize ROI

* Operating plant
Equipment and capability is fixed

Processes must be operated around 70% of design
to break even

RTO benefits consistently estimated to be around

3-5%



Can we model a plant just from
its historical operating data?



Projection methods (PCA/PLS)

* Technique to find patterns in sets of data

* Linear algebra (singular value decomposition)

X =UWV' =TP'

mxn Zo mxn nxn nxn

AZ
UTU=1



Two dimensional example



Projection Methods

= PCA

Find an optimal (least squares) approximation to a

matrix X usingT,..T, k<<n

* PLS

Find a projection that approximates X well, and

correlates withY



Partial least squares (PLS)

* Approximate X andY

X =TP’

Y=TC'



Happenstance plant data

= Number of measurements >> rank (true
dimensionality)

* Every engineering relationship removes 1

(el -fe[a-t-Molmian-i-xelolanl

* However operator rules of thumb also

remove degrees of freedom



Projection Model

* Models the correlation between variables
caused by:

Fundamental engineering relationships

Operator preferences

* This is not the full space

It is a subspace within which the operator is

familiar



Flow example revisited

| B, C, D, E

Ai C A, B, C, D, E,

NY a GY AY AY

Although we have 5 columns, the rank of the matrix =3

A=B+C+D
D=E



Latent space optimization
. .

T

maximize F(x,v)+e x+d'y
subject to

X =TP' PCA model (linear)

Y=T7C' PLS model (linear)

i Boundaries of
} B
a sphere



Key ideas

First principal models need to be calibrated
against the plant

Model the plant data directly

Operators don't like surprises

Model the operator

Does it work?

Is this optimal?



Case Study

* Chemical company
If we expand our feed system, what is the capacity
of the downstream units?



Flowsheet



Dimensions and data

" 70 operator setpoints and valve positions

* 22 lab analyses

" 1 year of operating data (hourly averages)



1 23 4 5 6 7 8 g 1011 12 13 14 15 16 17 18 19 20 21 22 23

X Variance Explained

PCA analysi s results



Conclusions

* Although there were 70 setpoints...
The underlying dimensionality of this data was

much lower

* With a purely linear model
13 components could explain 90% of the variation

23 components could explain > 97% of the
variation

Nonlinearity is not significant over the operating
range studied



Results

* Latent space optimization
Plant capable of 10% rate increase while keeping
product qualities within specification

Identified bottlenecks (valves wide open)

Optimum plausible and familiar

Restricted to “typical” plant envelope

* Actual
Post audit test run

New production record: within 0.2% of prediction



Globally optimal?

* Probably not

= Better and feasible
Certainly



Final thoughts

* Optimization math human math

* Our ability to make sense of high dimensional
and complicated situations is limited

Politics is the art of the possible
Bismarck


